PALLADIUM - CATALYZED REACTIONS OF TRIALKYLSTANNYL PHENYL SULFIDES WITH ALKENYL BROMIDES. A NEW DIASTE-REOSELECTIVE SYNTHESIS OF (E)-1-ALKENYL PHENYL SULFIDES

Adriano Carpita, Renzo Rossi^(*), and Barbara Scamuzzi Dipartimento di Chimica e Chimica Industriale - Università di Pisa - Via Risorgimento 35 - 56100 - Pisa - ITALY

<u>Summary:</u> The reaction of easily available stereoisomeric mixtures of 1-alkenyl bromides with molar excesses of trialkylstannyl phenyl sulfides takes place readily in the presence of Pd(PPh₃)₄ to afford diastereoselectively (E)-1-alkenyl phenyl sulfides in excellent yields.

Vinyl sulfides are quite interesting reagents which undergo a variety of synthetically useful transformations. They undergo [2+2]- and [4+2]- cyclo-additions¹ and are converted to alkenes by the Ni-catalyzed cross-coupling with alkyl, aryl and alkenyl Grignard reagents². Moreover, these compounds, which are synthetically equivalent to carbonyl groups³, may be easily transformed into the corresponding sulfoxides⁴.

Since aryl sulfides have been recently prepared in good yields by Pd-catalyzed reactions of tributylstannyl alkyl or aryl sulfides with aryl bromides⁵, it appeared interesting to extend this procedure to the synthesis of vinyl phenyl sulfides. First, we examined the reaction of trialkylstannyl phenyl sulfides $(1)^6$ with 2-bromo-1-alkenes (2), in the presence of catalytic amounts of Pd(PPh₃)₄, but unsatisfactory results were obtained.

 $R_{3}^{1}Sn - SPh$ $Ia R = CH_{3}$ $Ib R = C_{4}H_{9}$ $R = C_{5}H_{11}$ $R = C_{5}H_{11}$

For instance, reaction of 1-(bromovinyl)trimethylsilane (1a) (69.9 mmol) with a solution of 2a (69.9 mmol) and Pd(PPh₃)₄ (3 mol %) in benzene (70 ml) at 80° C for 40 h gave in 88 % yield a mixture of 1-(trimethylsilyl)-1-(phenylthio)ethene (3) and (E)/(Z)-2-(trimethylsilyl)-1-(phenylthio)ethene (4)⁷ in a 76/24 ratio. Analogously, reaction of 2b with 1b in toluene at 110° C for 4.5 h, in the presence of 3 mol % of Pd(PPh₃)₄, afforded in 99 % yield a mixture of the alkenyl phenyl sulfides 5 and 6, in a 77.3/22.7 ratio.

Since steric hindrance could be an important factor in this type of coupling reactions, we examined the reactivity of 1-alkenyl bromides (7) which are less hindered than the corresponding 2-bromo-1-alkenes. We found that in this case the cross-couplings proceed cleanly and efficiently. Moreover, we observed that (E)-and (Z)-1-bromo-1-alkenes exhibit differing reactivity towards I, and, in particular, that (E)-7 undergoes stereospecific Pd-mediated cross-coupling faster than the corresponding (Z)-stereoisomers⁸. Thus, the following simple and convenient highly diastereoselective procedure for the synthesis of (E)-1-alkenyl phenyl sulfides (8), starting from easily available diastereomeric mixtures of 7^9 , was developed.

$$n = \frac{R}{(E) - 7} + m = \frac{R}{(Z) - 7} + 0.95 n = \frac{R_3^1 \text{Sn} - \text{SPh}}{I} + \frac{Pd(PPh_3)_4}{benzene \text{ or toluene, } \Delta}$$

$$\rightarrow 0.95 n = \frac{R}{(E) - 8} + m = \frac{R}{(Z) - 7} + 0.05 n = \frac{R}{(E) - 7} + \frac{R_3^1 \text{SnBr}}{g}$$

A stereoisomeric mixture of 7, containing n equiv of the (E)-stereoisomer, was reacted under argon with a benzene or toluene solution of 0.95 n equiv of 1, in the presence of 3-4 mol % of $Pd(PPh_3)_4$. The mixture was stirred at the appropriate temperature for the required length of time (see Table 1), during which it became red. The reaction mixture was quenched with 5 N NaOH, washed with water, and extracted with ether. The ether extracts were filtered, dried, and concentrated *in* vacuo. The residue was dissolved in hexane and filtered. The hexane solutions of \mathcal{S} prepared from Ia were concentrated and purified by MPLC on a silica gel column, followed by distillation. The hexane solutions of \mathcal{S} prepared from Ibwere washed with aq KF and filtered to remove tributyltin fluoride. The filtrates were concentrated *in vacuo* and purified by MPLC on a silica gel column. (E)-1-Alkenyl phenyl sulfides (\mathcal{S}), having 96 - 99 % stereoisomeric purity, were obtained in 70 - 91 % yields. The experimental conditions and the results of the coupling reaction between a variety of (E)/(Z)-1-alkenyl bromides (7)¹⁰ and Iare summarized in Table 1.

In conclusion, the procedure described here, which represents the first example of a diastereoselective C-S bond formation, provides a highly stereoselective route to (E)-1-alkenyl phenyl sulfides starting from easily available starting materials. Owing to its simplicity, this procedure competes favourably with some established stereospecific¹¹ or stereoselective methods¹² for preparing these interesting synthetic intermediates. One of these, i.e. (E)-2-(trimethylsilyl)-1-(phenylthio)ethene (8a), which has been previously employed to synthesize 5-mercaptophenyl cyclopenten-2-ones¹³, may be conveniently employed to synthesize stereospecifically pure (E)-1-trimethylsilyl-1-alkenes (11) in good yields. In fact, reaction of 8a with 2 mol equiv of a Grignard reagent, in the presence of catalytic amounts of NiCl₂(dppe), affords 11 in 64 - 77 % yields.

TABLE 1

Diastereoselective Synthesis of (E)-1-Alkenyl Phenyl Sulfides a)

1-Alkenyl halide			Trialkylstannyl phenyl sulfide		Solvent	Temp	Reaction	Product		
7	R	(E)/(Z) ratio	1	R ¹		(°C)	(h)	(E) - <i>8</i>	Yield (%)	Stereoisom. purity (%)
78	Me ₃ SI	87/13	18	СН3	benzene	40	2	8a ^{b)}	91	>99.0
7Ъ	C ₅ H ₁₁	83/17	1b	C₄H ₉	toluene	65	6	80 4	70	>98.0
7c	C ₈ H ₅	89/11	15	C₄H ₉	toluene	110	2	8c ⁴	91	98.5
7đ		68/32	1b	C₄H9	toluene	60	3	8d ^{c)}	85	98.4
78	C ₆ H ₁₃	64/36	16	C₄H9	toluene	50	7.5	8 e ^{c)}	84	96.0

a) All reactions were carried out using 3-4 mol % of Pd(PPh₃)₄ and a I/(E)-7 1/0.95 molar ratio; b) **8a** = (E)-**4**; c) distillation of **8b**-**8e** caused a significant stereomutation.

Acknowledgments: This work was supported by the National Research Council of Italy (CNR) and by the Ministero della Pubblica Istruzione.

REFERENCES AND NOTES

- 1. O. De Lucchi, L. Pasquato, Tetrahedron, 44, 6755 (1988)
- H. Okamura, M. Mita, H. Takei, Tetrahedron Lett., 43 (1979); E. Wenkert, T. W. Ferreira, E. L. Michelotti, J. Chem. Soc. Chem. Commun., 637 (1979); E. Wenkert, T.W. Ferreira, J. Chem. Soc. Chem. Commun., 840 (1982); E. Wenkert, M. H. Leftin, E. L. Michelotti, J. Chem. Soc. Chem. Commun., 617 (1984); Y. Ikeda, K. Furuta, N. Meguriya, N. Ikeda, H. Yamamoto, J. Am. Chem. Soc., 104, 7663 (1982); Y. Ikeda, J. Ukai, N. Ikeda, H. Yamamoto, Tetrahedron, 43, 731 (1987); V. Fiandese, G. Marchese, G. Mascolo, F. Naso, L. Ronzini, Tetrahedron Lett., 29, 3705 (1988).

- ____
- E. J. Corey, B. W. Brickson, R. Noyori, J. Am. Chem. Soc., 93, 1724 (1973); H. Takahashi, K. Oshima, H. Yamamoto, H. Nozaki, J. Am. Chem. Soc., 95, 5803 (1973); B. M. Trost, K. Hiroi, S. Kurozumi, J. Am. Chem. Soc., 97, 438 (1975); A. J. Mura, G. Majetich, P. A. Grieco, T. Cohen, Tetrahedron Lett., 4437 (1975).
- 4. T. Takeda, H. Furukawa, M. Fujimori, K. Suzuki, T. Fujiwara, Bull. Chem. Soc. Jpn., 57, 1863 (1984)
- 5. M. Kosugi, T. Ogata, M. Terada, H. Sano, T. Migita, Bull. Chem. Soc. Jpn., 58, 3657 (1985)
- 6. Tributylstannyl phenyl sulfide (1b) and trimethylstannyl phenyl sulfide (1a) were prepared by reaction of THF solutions of C₆H₅SLi with Bu₃SnCl or Me₃SnCl, respectively, at 65 °C for 5 h.
- 7. The formation of compound 4 can be rationalized as follows:

- For earlier work concerning the Pd-catalyzed diastereoselective cross-coupling between stereoisomeric mixtures of 1-alkenyl bromides and organometallics, see: a) R. Rossi, A. Carpita, P. Piccardi, in "Pesticide Chemistry: Human Welfare and the Environment", J. Miyamoto, P. C. Kearney Eds., Pergamon Press, Oxford, 1981, p 129; b) R. Rossi, A. Carpita, Tetrahedron Lett., 27, 2529 (1986); c) A. Carpita, R. Rossi, Tetrahedron Lett., 27, 4351 (1986); d) B. P. Andreini, A. Carpita, R. Rossi, Tetrahedron Lett., 27, 5533 (1986); e) B. P. Andreini, A. Carpita, R. Rossi, Tetrahedron Lett., 29, 2239 (1988); f) B. P. Andreini, M. Benetti, A. Carpita, R. Rossi, Gazz. Chim. Ital., 118, 469 (1988).
- 9. (E)/(Z)-2-(Bromovinyl)trimethylsilane (7z) and (E)/(Z)-1-bromo-2-phenylethene (7c) are commercially available (Fluka). Stereoisomeric mixtures of 1-bromo-1-heptene (7b) and 1-bromo-1-octene (7e) were prepared according to the general method described in Ref. 8a. (E)/(Z)-1-Bromo-2-(2-thienyl)ethene (7d) was prepared from thiophene-2-carboxaldehyde according to the procedure described by: T. Hirao, T. Masunaga, Y. Oshiro, T. Agawa, J. Org. Chem., 46, 3745 (1981).
- 10. Trials for the preparation of (E)-1-bromo-2-(phenylthio)ethene starting from *ls* and a commercially available stereoisomeric mixture of 1.2-dibromoethene were failed.
- For the stereospecific synthesis of alkenyl sulfides, see: H. Neumann, D. Seebach, Chem. Ber., 2785 (1978); H. Takei, H. Sugimara, M. Miura, H. Okamura, Chem. Lett., 1209 (1980); S. I. Murahashi, M. Yamamura, K. Yanagisawa, N. Mita, K. Kondo, J. Org. Chem., 44, 2408 (1979); M. Hoshi, Y. Masuda, A. Arase, J. Chem. Soc. Chem. Commun., 1068 (1985); V. Fiandese, G. Marchese, F. Naso, L. Ronzini, J. Chem. Soc. Chem. Commun., 647 (1982); V. Fiandese, G. Marchese, F. Naso, L. Ronzini, J. Chem. Soc. Perkin Trans. I, 1115 (1985). V. Fiandese, G. Miccoli, F. Naso, L. Ronzini, J. Organomet. Chem., 312, 343 (1986).
- For the stereoselective synthesis of alkenyl sulfides, see: W. E. Truce, J. A. Simms, J. Am. Chem. Soc., 78, 2756 (1956); P. Vermeer, J. Mejer, C. Eylander, L. Brandsma, Recl. Trav. Chim. Pays-Bas, 95, 25 (1976); A. Alexakis, G. Cahiez, J. F. Normant, Tetrahedron, 36, 1961 (1980); Ref. 4; Y. Hoshino, T. Ishiyama, N. Miyamura, A. Suzuki, Tetrahedron Lett., 29, 3983 (1988).
- 13. P. Magnus, D. Quagliato, J. Org. Chem., 50, 1621 (1985)

(Received in UK 5 April 1989)